Department of Mechanical Engineering

PVP 19

Basic Electrical & Electronics Engineering

Duble Electrical of Electrical Singularing								
Course Code	19ES1201	Year	I	Semester	II			
Course Category	Engineering Sciences	Branch	ME	Course Type	Theory			
Credits	4	L-T-P	3-1-0	Prerequisites	Nil			
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100			

Course Outcomes							
Upon s	Upon successful completion of the course, the student will be able to						
CO1	To familiarize the basic DC and AC networks used in electrical and electronic						
	circuits.						
CO2	To explain the concepts of electrical machines and their characteristics.						
CO3	To identify the importance of transformers in transmission and distribution of						
	electric power.						
CO4	To impart the knowledge about the characteristics, working principles and						
	applications of semiconductor diodes, metal Oxide semiconductor field effect						
	transistors (MOSFETs).						
CO5	To expose basic concepts and applications of Operational Amplifier and						
	configurations.						

	Contribution of Course Outcomes towards achievement of Program Outcomes													
&Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2					1		1		2	1	1	1
CO2	3	2				1	1		1		2	1	2	2
CO3	3	2				1	1		1		2	1	2	2
CO4	3	2					1		1		2	1	1	2
CO5	3	2					1		1		2	1	1	2

Syllabus				
Unit No.	Contents	Mapped CO		
I	Basic laws and Theorems : Ohms law, Kirchoff's Laws, series and parallel circuits, source transformations, delta-wye conversion. Mesh analysis, nodal analysis. Linearity and superposition theorem, Thevenin's and Norton's theorem with simple examples, maximum power transfer theorem with simple examples.	CO1		
II	DC Machines: Constructional features, induced EMF and torque expressions, different types of excitation, performance characteristics of different types of dc machines, Starters: 2-point, 3-point starters, losses and efficiency, efficiency by direct loading.	CO2		
Ш	Transformers: Constructional details, EMF equation, voltage regulation, losses and efficiency, open/short- circuit tests and determination of efficiency. Three Phase Induction Motors: Construction, working principle	СОЗ		

Department of Mechanical Engineering

PVP 19

	of three phase induction motor, Torque and Torque-Slip characteristics.	
IV	Semiconductor Devices: p-n Junction diode - Basic operating principle, current-voltage characteristics, rectifier circuits (half-wave, full-wave, rectifier with filter capacitor), Zener diode as Voltage Regulator; Metal oxide semiconductor field effect transistor (MOSFET): Operation of NMOS and PMOS FETs, MOSFET as an amplifier and switch.	CO4
V	Operational Amplifiers: The Ideal Op Amp, The Inverting Configuration, The closed loop gain, Effect of Finite open-loop gain, The Noninverting Configuration, The closed loop gain, Characteristics of Non Inverting Configuration, Effect of finite open loop gain, the voltage follower, Difference amplifiers, A Single Op-amp difference amplifier.	CO5

Learning Resources

Text Books

- 1. D.P.Kothari, I.J.Nagrath, Basic Electrical and Electronics Engineering, 1stedition, McGraw Hill Education (India) Private Limited, 2017.
- 2 B.L.Theraja, Fundamentals of Electrical Engineering and Electronics, 1stedition, S.Chand Publishing, New Delhi, 2006.
- 3. Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits 6th edition, Oxford University Press, 2014.

Reference Books

- 1. S.K. Bhattacharya, Basic Electrical and Electronics Engineering, Pearson Education, 2011.
- 2. Dharma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2/e, Pearson Education, 2008.
- 3. R.K.Rajput, Basic Electrical and Electronics Engineering, University Science Press, New Delhi, 2012.

e- Resources & other digital material

http://202.53.81.118/course/view.php?id=122

https://nptel.ac.in/courses/108105112/